pipeline.cfg /.json
model pipeline file
#functional_label: label of functional data to enter in first-level analysis
only when used in combination with "functional_label" preprocessing steps: enter Secondary Dataset label identifying the desired functional dataset (default: Primary Dataset, i.e. fully preprocessed functional data)
#functional_smoothinglevel: level of smoothing of functional data to enter in first-level analysis
only when used in combination with preprocessing pipelines which implement multiple smoothing steps: enter 0/1/2 (0 unsmoothed data; 1 minimally-smoothed data; 2 fully-smoothed data)
#model_basis : temporal response function
hrf / hrf+deriv / hrf+derivs / none : response function (default: hrf+deriv)
hrf for hemodynamic response function only
hrf+deriv to add temporal derivative
hrf+derivs to add temporal and dispersion derivatives
none for no hrf convolution
#model_covariates: additional control covariates
list of additional covariates ; possible values: (default: motion / art)
motion : (used in combination with functional_realignment preprocessing step) adds 6 motion parameters
motion+deriv: adds 12 motion parameters (6 motion parameters + their first-order derivatives)
motion+deriv+square: adds 24 motion parameters (6 motion parameters + their first-order derivatives + both squared)
art: (used in combination with functional_art preprocessing step) ads scrubbing covariates (one per outlier scan)
linear: adds a linear detrending term (within each run/session)
denoise: (used in combination with functional_regression step) adds covariates defined or estimated in functional_regression step
<covariatename>: (any existing 1st-level covariate) adds manually-defined covariates
<filename>.mat (one file per run) : adds manually-defined covariates
#model_serial : serial correlation
none / AR(1) : serial correlation modeling (default: AR(1))
#model_session : random/fixed task*session effects
1/0 : estimates session-specific task effects (default value: 1; when set to 0 SPM estimates session-invariant task effects -it assumes same/constant effect across all sessions-; alternatively set to cell array of task names in order to specify individual task effects that will be model as session-invariant)
#model_folder : output folder
folder where model_name subfolder will be created (default '../'; relative to the <pipelineID> directory)
set to the keyword 'root' to indicate the above location (root/<pipelineID>)
set to the keyword 'preproc' to indicate the root/<pipelineID>/results/firstlevel location
#mthresh : implicit mask
implicit masking threshold as proportion of global signal (default value: 0.8)
#explicitmask : explicit mask
optional explicit mask (filename)
#hpf : high-pass filter
high-pass filter threshold -in seconds- (default value: 128s)
#lpf : low-pass filter
low-pass filter threshold -in seconds- (default value: 0s = no low-pass filter)
#contrast_addsession: adds session-specific task contrasts
0/1 for each contrast defined in #contrasts field above, create additional SESSION##_[contrastname] including only the n-th run data (default 0)
#contrast_addcv : adds across-sessions cross-validation task contrasts
0/1 for each contrast defined in #contrasts field above, create additional SESSION##_[contrastname] and ORTH_TO_SESSION##_[contrastname] including only the n-th run and all but the n-th run data, respectively (default 0)
#contrast_addoddeven: adds odd/even session task contrast
0/1 for each contrast defined in #contrasts field above, create additional ODD_[contrastname] and EVEN_[contrastname] including only odd and even numbered runs, respectively (default 0)
#contrast_removenonestimablecols: disregard nonestimable regressors
0/1 When defining contrast vectors skip design-matrix columns that are not fully estimable individually (default 0)
#contrast_removenonestimablecontrasts: disregard nonestimable contrasts
0/1 Skip contrasts that are not fully estimable (default 1)
#contrast_removeexistingcontrasts: remove previous contrasts
0/1 removes/deletes any older/existing contrasts in this first-level analysis (default 1)
#contrast_addevent: adds event-specific task contrasts
(for non-parametric modulations) 0/1 for each contrast defined in #contrasts field above, automatically create additional [contrastname]_EVENT## contrasts for each individual condition (default 0)
#contrastonly : skip model definition and estimation
1/0 : skips first-level model definition/estimation step and performs only contrast definition/estimation [0]
pipeline_model_Default.cfg example:
#functional_label
minimallysmoothed
#model_basis
hrf+deriv
#model_covariates
denoise
#model_serial
AR(1)
#hpf
128